An engine block is the structure which contains the cylinders, and other parts, of an internal combustion engine. In an early automotive engine, the engine block consisted of just the cylinder block, to which a separate crankcase was attached. Modern engine blocks typically have the crankcase integrated with the cylinder block as a single component. Engine blocks often also include elements such as coolant passages and oil galleries. The term "cylinder block" is often used interchangeably with engine block, although technically the block of a modern engine (i.e. multiple cylinders in a single component) would be classified as a monobloc. Another common term for an engine block is simply "block". __TOC__

Engine block components

The main structure of an engine (i.e. the long block, excluding any moving parts) typically consists of the cylinders, coolant passages, oil galleries, crankcase and cylinder head(s). The first production engines of the 1880s to 1920s usually used separate components for each of these elements, which were bolted together during engine assembly. Modern engines, however, often combine many of these elements into a single component, in order to reduce production costs. The evolution from separate components to an engine block integrating several elements (a monobloc engine) has been a gradual progression throughout the history of internal combustion engines. The integration of elements has relied on the development of foundry and machining techniques. For example, a practical low-cost V8 engine was not feasible until Ford developed the techniques used to build the Ford flathead V8 engine. These techniques were then applied to other engines and manufacturers.

Cylinder blocks

A cylinder block is the structure which contains the cylinder, plus any cylinder sleeves and coolant passages. In the earliest decades of internal combustion engine development, cylinders were usually cast individually, so cylinder blocks were usually produced individually for each cylinder. Following that, engines began to combine two or three cylinders into a single cylinder block, with an engine combining several of these cylinder blocks combined together. In early engines with multiple cylinder banks — such as a V6, V8 or flat-6 engine — each bank was typically a separate cylinder block (or multiple blocks per bank). Since the 1930s, mass production methods have developed to allow both banks of cylinders to be integrated into the same cylinder block.

Cylinder liners

Wet liner cylinder blocks use cylinder walls that are entirely removable, which fit into the block by means of special gaskets. They are referred to as "wet liners" because their outer sides come in direct contact with the engine's coolant. In other words, the liner is the entire wall, rather than being merely a sleeve. Advantages of wet liners are a lower mass, reduced space requirement and that the coolant liquid is heated faster from a cold start, which reduces start-up fuel consumption and provides heating for the car cabin sooner. Dry liner cylinder blocks use either the block's material or a discrete liner inserted into the block to form the backbone of the cylinder wall. Additional sleeves are inserted within, which remain "dry" on their outside, surrounded by the block's material. For either wet or dry liner designs, the liners (or sleeves) can be replaced, potentially allowing overhaul or rebuild without replacement of the block itself, although this is often not a practical repair option.

Coolant passages

Oil passages



An engine where all the cylinders share a common block is called a monobloc engine. Most modern engines (including cars, trucks, buses and tractors) use a monoblock design of some type, therefore few modern engines have a separate block for each cylinder. This has led to the term "engine block" usually implying a monobloc design and the term monobloc itself is rarely used. In the early years of the internal combustion engine, casting technology could produce either large castings, or castings with complex internal cores to allow for water jackets, but not both simultaneously. Most early engines, particularly those with more than four cylinders, had their cylinders cast as pairs or triplets of cylinders, then bolted to a single crankcase. As casting techniques improved, an entire cylinder block of 4, 6, or 8 cylinders could be produced in one piece. This monobloc construction was simpler and more cost effective to produce. For engines with an inline configuration, this meant that all the cylinders, plus the crankcase, could be produced in a single component. One of the early engines produced using this method is the 4-cylinder engine in the Ford Model T, introduced in 1908. The method spread to straight-six engines and was commonly used by the mid-1920s. Up until the 1930s, most V engines retained a separate block casting for each cylinder bank, with both bolted onto a common crankcase (itself a separate casting). For economy, some engines were designed to use identical castings for each bank, left and right. A rare exception is the Lancia 22½° narrow-angle V12 of 1919, which used a single block casting combining both banks. The Ford flathead V-8 — introduced in 1932 — represented a significant development in the production of affordable V engines. It was the first V8 engine with a single engine block casting, putting a V8 into an affordable car for the first time. The communal water jacket of monobloc designs permitted closer spacing between cylinders. The monobloc design also improved the mechanical stiffness of the engine against bending and the increasingly important torsional twist, as cylinder numbers, engine lengths, and power ratings increased.

Integrated crankcase

Most engine blocks today, except some unusual V or radial engines and large marine engines, are a monobloc for all the cylinders, plus an integrated crankcase. In such cases, the skirts of the cylinder banks form a crankcase area of sorts, which is still often called a crankcase despite no longer being a discrete part. Use of steel cylinder liners and bearing shells minimizes the effect of the relative softness of aluminium. Some engine designs use plasma transferred wire arc thermal spraying instead cylinder sleeves, to reduce weight. They can also be produced in compacted graphite iron (CGI) such as some diesel engines.

Integrated cylinder head

Some modern consumer-grade small engines use a monobloc design where the cylinder head, block, and half the crankcase share the same casting. One reason for this, apart from cost, is to produce an overall lower engine height. The disadvantage can be that repairs become more time-consuming and perhaps impractical. An example of engines with integrated cylinder heads are the Honda GC-series and GXV-series engines, which are sometimes called "Uniblock" by Honda. Includes sectioned drawings

Integrated transmission

Several cars with transverse engines have used an engine block consisting of an integrated transmission and crankcase. Cars that have used this arrangement include the 1966-1973 Lamborghini Miura and several cars using the BMC A-series and E-series engines. This design often results in the engine and transmission sharing the same oil. Many farm tractor designs have cylinder block, crankcase, transmission and rear axle integrated into a single unit. An early example is the Fordson tractor.

Block material

Engine blocks are normally cast from either a cast iron or an aluminium alloy. The aluminium block is much lighter in weight, and has better heat transfer to the coolant, but iron blocks retain some advantages such as durability and better clearances from heat expansion.

See also

*Core plug *Head gasket *Long block *Short block


{{DEFAULTSORT:Engine Block Category:Automobile engines Category:Engine technology Category:Piston engine configurations