HOME
        TheInfoList






Vindija Cave

    Neanderthals are hominids in the genus Homo, humans, and generally classified as a distinct species, H. neanderthalensis, though sometimes as a subspecies of modern human as H. sapiens neanderthalensis. This would necessitate the classification of modern humans as H. s. sapiens.[8]

A large part of the controversy stems from the vagueness of the term "species", as it is generally used to distinguish two genetically isolated populations, but admixture between modern humans and Neanderthals is known to have occurred.[8][123] However, the absence of Neanderthal-derived patrilineal Y-chromosome and matrilineal mitochondrial DNA (mtDNA) in modern humans, along with the underre

A large part of the controversy stems from the vagueness of the term "species", as it is generally used to distinguish two genetically isolated populations, but admixture between modern humans and Neanderthals is known to have occurred.[8][123] However, the absence of Neanderthal-derived patrilineal Y-chromosome and matrilineal mitochondrial DNA (mtDNA) in modern humans, along with the underrepresentation of Neanderthal X chromosome DNA, could imply reduced fertility or frequent sterility of some hybrid crosses,[80][124][125][126] representing a partial biological reproductive barrier between the groups, and therefore species distinction.[80]

In 2014, geneticist Svante Pääbo described such "taxonomic wars" as unresolveable, "since there is no definition of species perfectly describing the case".[8]

Neanderthals are thought to have been more closely related to Denisovans than to modern humans. Likewise, Neanderthals and Denisovans share a more recent last common ancestor (LCA) than to modern humans, based on nuclear DNA (nDNA). However, Neanderthals and modern humans share a more recent mitochondrial LCA looking at mtDNA. This likely resulted from an interbreeding event subsequent to the Neanderthal/Denisovan split which introduced another mtDNA line. This involved either introgression coming from an unknown archaic human into Denisovans,[122][84][127][83][128] or introgression from an earlier unidentified modern human wave from Africa into Neanderthals.[129]

It is largely thought that H. heidelbergensis was the last common ancestor of Neanderthals, Denisovans, and modern humans before populations became isolated in Europe, Asia, and Africa respectively.[131] The taxonomic distinction between H. heidelbergensis and Neanderthals is mostly based on a fossil gap in Europe between 300 and 243 thousand years ago during marine isotope stage 8. "Neanderthals", by convention, are fossils which date to after this gap.[130][25][21] However, 430 thousand year (ka) old bones at Sima de los Huesos could represent early Neanderthals or a closely related group,[23][132][133] and the 400,000 year old Aroeira 3 could represent a transitional phase. Ancestral and derived morphs could have lived concurrently.[134] It is also possible that there was gene flow between Western Europe and Africa during the Middle Pleistocene, obscuring Neanderthal characteristics in such specimens, namely from Ceprano, Italy, and Sićevo Gorge, Serbia.[23] The fossil record is much more complete from 130,000 years ago onwards,[135] and specimens from this period make up the bulk of known Neanderthal skeletons.[136][137] Dental remains from the Italian Visogliano and Fontana Ranuccio sites indicate that Neanderthal dental features had evolved by around 450–430 thousand years ago during the Middle Pleistocene.[138]

There are two main hypotheses regarding the evolution of Neanderthals following the Neanderthal/human split: two-phase and accretion. Two-phase argues a single major environmental event—such as the Saale glaciation—caused European H. heidelbergensis to rapidly increase body size and robustness, as well as undergo an enlengthenment of the head (phase 1), which then led to other changes in skull anatomy (phase 2).[119] However, Neanderthal anatomy may not have been driven entirely by adapting to cold weather.[65] Accretion holds that Neanderthals slowly evolved over time from the ancestral H. heidelbergensis, divided into 4 stages: early-pre-Neanderthals (MIS 12, Elster glaciation), pre-Neanderthals sensu lato (MIS 119, Holstein interglacial), early Neanderthals (MIS 7–5, Saale glaciationEemian), and classic Neanderthals sensu stricto (MIS 4–3, Würm glaciation).[130]

Numerous dates for the Neanderthal/human split have been suggested. The date of around 250,000 years ago cites "H. helmei" as being the last common ancestor (LCA), and the split is associated with the Levallois technique of making stone tools. The date of about 400,000 years ago uses H. heidelbergensis as the LCA. 600,000 years ago says that "H. rhodesiensis" was the LCA, which split off into modern human lineage and a Neanderthal/H. heidelbergensis lineage.[139] 800,000 years ago has H. antecessor as the LCA, but different variations of this model would push the date back to 1 million years ago.[139][23] However, a 2020 analysis of H. antecessor enamel proteomes suggests that H. antecessor is related but not a direct ancestor.[140] DNA studies have yielded various results on Neanderthal/human divergence time, such as 538–315,[21] 553–321,[141] 565-503,[142] 654–475,[139] 690–550,[143] 765–550,[23][83] 741–317,[144] and 800–520 thousand years ago;[145] and a dental analysis concluded before 800,000 years ago.[22]

Neanderthals and Denisovans are more closely related to each other than they are to modern humans, meaning the Neanderthal/Denisovan split occurred after their split with modern humans.[146][83][23][127] Assuming a mutation rate of 1x10−9 or 0.5x10−9 per base pair (bp) per year, the Neanderthal/Denisovan split occurred around either 236–190 or 473–381 thousand years ago respectively.[83] Using 1.1x10−8 per generation with a new generation every 29 years, the time is 744,000 years ago. Using 5x10−10 nucleotide site per year, it is 644,000 years ago. Using the latter dates, the split had likely already occurred by the time hominins spread out across Europe, and unique Neanderthal features had begun evolving by 600–500 thousand years ago.[127] Before splitting, Neanderthal/Denisovans (or "Neandersovans") migrating out of Africa into Europe apparently interbred with an unidentified "superarchaic" human species who were already present there; these superarchaics were the descendants of a very early m

There are two main hypotheses regarding the evolution of Neanderthals following the Neanderthal/human split: two-phase and accretion. Two-phase argues a single major environmental event—such as the Saale glaciation—caused European H. heidelbergensis to rapidly increase body size and robustness, as well as undergo an enlengthenment of the head (phase 1), which then led to other changes in skull anatomy (phase 2).[119] However, Neanderthal anatomy may not have been driven entirely by adapting to cold weather.[65] Accretion holds that Neanderthals slowly evolved over time from the ancestral H. heidelbergensis, divided into 4 stages: early-pre-Neanderthals (MIS 12, Elster glaciation), pre-Neanderthals sensu lato (MIS 119, Holstein interglacial), early Neanderthals (MIS 7–5, Saale glaciationEemian), and classic Neanderthals sensu stricto (MIS 4–3, Würm glaciation).[130]

Numerous dates for the Neanderthal/human split have been suggested. The date of around 250,000 years ago cites "H. helmei" as being the last common ancestor (LCA), and the split is associated with the Levallois technique of making stone tools. The date of about 400,000 years ago uses H. heidelbergensis as the LCA. 600,000 years ago says that "H. rhodesiensis" was the LCA, which split off into modern human lineage and a Neanderthal/H. heidelbergensis lineage.[139] 800,000 years ago has H. antecessor as the LCA, but different variations of this model would push the date back to 1 million years ago.[139][23] However, a 2020 analysis of H. antecessor enamel proteomes suggests that H. antecessor is related but not a direct ancestor.[140] DNA studies have yielded various results on Neanderthal/human divergence time, such as 538–315,[21] 553–321,[141] 565-503,[142] 654–475,[139] 690–550,[143] 765–550,[23][83] 741–317,[144] and 800–520 thousand years ago;[145] and a dental analysis concluded before 800,000 years ago.[22]

Neanderthals and Denisovans are more closely related to each other than they are to modern humans, meaning the Neanderthal/Denisovan split occurred after their split with modern humans.[146][83][23][127] Assuming a mutation rate of 1x10−9 or 0.5x10−9 per base pair (bp) per year, the Neanderthal/Denisovan split occurred around either 236–190 or 473–381 thousand years ago respectively.[83] Using 1.1x10−8 per generation with a new generation every 29 years, the time is 744,000 years ago. Using 5x10−10 nucleotide site per year, it is 644,000 years ago. Using the latter dates, the split had likely already occurred by the time hominins spread out across Europe, and unique Neanderthal features had begun evolving by 600–500 thousand years ago.[127] Before splitting, Neanderthal/Denisovans (or "Neandersovans") migrating out of Africa into Europe apparently interbred with an unidentified "superarchaic" human species who were already present there; these superarchaics were the descendants of a very early migration out of Africa around 1.9 mya.[147]

Pre- and early Neanderthals, living before the Eemian interglacial (130,000 years ago), are poorly known and come mostly from Western European sites. From 130,000 years ago onwards, the quality of the fossil record increases dramatically with classic Neanderthals, who are recorded from Western, Central, Eastern, and Mediterranean Europe,[24] as well as Southwest, Central, and Northern Asia up to the Altai Mountains in southern Siberia. Pre- and early Neanderthals, on the other hand, seem to have continuously occupied only France, Spain, and Italy, though some appear to have moved out of this "core-area" to form temporary settlements eastward (though without leaving Europe). Nonetheless, southwestern France has the highest density of sites for pre-, early, and classic Neanderthals.[148]

The southernmost find was recorded at Shuqba Cave, Levant;[149] reports of Neanderthals from the North African Jebel Irhoud[150] and Haua Fteah[151] have been reidentified as H. sapiens. Their easternmost presence is recorded at Denisova Cave, Siberia 85°E; the southeast Chinese Maba Man, a skull, shares several physical attributes with Neanderthals, though these may be the result of convergent evolution rather than Neanderthals extending their range to the Pacific Ocean.[152] The northernmost bound is generally accepted to have been 55°N, with unambiguous sites known between 5053°N, although this is difficult to assess because glacial advances destroy most human remains, and palaeoanthropologist Trine Kellberg Nielsen has argued that a lack of evidence of Southern Scandinavian occupation is (at least during the Eemian interglacial) due to the former explanation and a lack of research in the area.[153][154] Middle Palaeolithic artefacts have been found up to 60°N on the Russian plains,[155][156][157] but these are more likely attributed to modern humans.Shuqba Cave, Levant;[149] reports of Neanderthals from the North African Jebel Irhoud[150] and Haua Fteah[151] have been reidentified as H. sapiens. Their easternmost presence is recorded at Denisova Cave, Siberia 85°E; the southeast Chinese Maba Man, a skull, shares several physical attributes with Neanderthals, though these may be the result of convergent evolution rather than Neanderthals extending their range to the Pacific Ocean.[152] The northernmost bound is generally accepted to have been 55°N, with unambiguous sites known between 5053°N, although this is difficult to assess because glacial advances destroy most human remains, and palaeoanthropologist Trine Kellberg Nielsen has argued that a lack of evidence of Southern Scandinavian occupation is (at least during the Eemian interglacial) due to the former explanation and a lack of research in the area.[153][154] Middle Palaeolithic artefacts have been found up to 60°N on the Russian plains,[155][156][157] but these are more likely attributed to modern humans.[158] A 2017 study claimed the presence of Homo at the 130,000 year old Californian Cerutti Mastodon site in North America,[159] but this is largely considered implausible.[160][161][162]

It is unknown how the rapidly fluctuating climate of the last glacial period (Dansgaard–Oeschger events) impacted Neanderthals, as warming periods would produce more favourable temperatures but encourage forest growth and deter megafauna, whereas frigid periods would produce the opposite.[163] However, Neanderthals may have preferred a forested landscape.[65] Populations may have peaked in cold but not extreme intervals, such as marine isotope stages 8 and 6 (respectively 300 and 191 thousand years ago during the Saale glaciation). It is possible their range expanded and contracted as the ice retreated and grew respectively to avoid permafrost areas, residing in certain refuge zones during glacial maxima.[163]

Like modern humans, Neanderthals probably descended from a very small population with an effective population—the number of individuals who can bear or father children—of 3,000 to 12,000 approximately. However, Neanderthals maintained this very low population, proliferating weakly harmful genes due to the reduced effectivity of natural selection.[73][164] Various studies, using mtDNA analysis, yield varying effective populations,[163] such as about 1,000 to 5,000;[164] 5,000 to 9,000 remaining constant;[165] or 3,000 to 25,000 steadily increasing until 52,000 years ago before declining until extinction.[75] However, all agree on low population,[163] which may have been up to 10 times smaller than contemporary human populations in Western Europe[166] possibly because Neanderthals had much lower fertility rates.[167] Estimates giving a total population in the higher tens of thousands[127] are contested.[164] A consistently low population may be explained in the context of the "Boserupian Trap": a population's carrying capacity is limited by the amount of food it can obtain, which in turn is limited by its technology. Innovation increases with population, but if the population is too low, innovation will not occur very rapidly and the population will remain low. This is consistent with the apparent 150,000 year stagnation in Neanderthal lithic technology.[163]

In a sample of 206 Neanderthals, based on the abundance of young and mature adults in comparison to other age demographics, about 80% of them above the age of 20 died before reaching 40. This high mortality rate was probably due to their high-stress environment.[77] However, it has also been estimated that the age pyramids for Neanderthals and contemporary modern humans were the same.[163] Infant mortality was estimated to have been very high for Neanderthals, about 43% in northern Eurasia.[168]

  • ^ Schwalbe, G. (1906). Studien zur Vorgeschichte des Menschen [Studies on the history of man] (in German). Stuttgart, E. Nägele. doi:10.5962/bhl.title.61918. hdl:2027/uc1.b4298459.
  • ^ Klaatsch, H. (1909). "Preuves que l'Homo Mousteriensis Hauseri appartient au type de Neandertal" [Evidence that Homo Mousteriensis Hauseri belongs to the Neanderthal type]. L'Homme Préhistorique (in French). 7: 10–16.
  • ^ Romeo, Luigi (1979). Ecce Homo!: a lexicon of man. John Benjamins Publishing Company. p. 92. ISBN 978-90-272-2006-6.
  • ^ a b c d e McCown, T.; Keith, A. (1939). The stone age of Mount Carmel. The fossil human remains from the Levalloisso-Mousterian. 2. Clarenden Press.
  • ^ Szalay, F. S.; Delson, E. (2013). Evolutionary history of the Primates. Academic Press. p. 508. ISBN 978-1-4832-8925-0.
  • ^ Wells, J. (2008). Longman Pronunciation Dictionary (3rd ed.). Pearson Longman. ISBN 978-1-4058-8118-0.
  • ^ a b c d Pääbo, S. (2014). Neanderthal man: in search of lost genomes. New York: Basic Books. p. 237.
  • ^ a b c Higham, T.; Douka, K.; Wood, R.; Ramsey, C. B.; Brock, F.; Basell, L.; Camps, M.; Arrizabalaga, A.; Baena, J.; Barroso-Ruíz, C.; C. Bergman; C. Boitard; P. Boscato; M. Caparrós; N.J. Conard; C. Draily; A. Froment; B. Galván; P. Gambassini; A. Garcia-Moreno; S. Grimaldi; P. Haesaerts; B. Holt; M.-J. Iriarte-Chiapusso; A. Jelinek; J.F. Jordá Pardo; J.-M. Maíllo-Fernández; A. Marom; J. Maroto; M. Menéndez; L. Metz; E. Morin; A. Moroni; F. Negrino; E. Panagopoulou; M. Peresani; S. Pirson; M. de la Rasilla; J. Riel-Salvatore; A. Ronchitelli; D. Santamaria; P. Semal; L. Slimak; J. Soler; N. Soler; A. Villaluenga; R. Pinhasi; R. Jacobi (2014). "The timing and spatiotemporal patterning of Neanderthal disappearance". Nature. 512 (7514): 306–309. Bibcode:2014Natur.512..306H. doi:10.1038/nature13621. hdl:1885/75138. PMID 25143113. S2CID 205239973. We show that the Mousterian [the Neanderthal tool-making tradition] ended by 41,030–39,260 calibrated years BP (at 95.4% probability) across Europe. We also demonstrate that succeeding 'transitional' archaeological industries, one of which has been linked with Neanderthals (Châtelperronian), end at a similar time.
  • ^ a b Higham, T. (2011). "European Middle and Upper Palaeolithic radiocarbon dates are often older than they look: problems with previous dates and some remedies". Antiquity. 85 (327): 235–249. doi:10.1017/s0003598x00067570. Few events of European prehistory are more important than the transition from ancient to modern humans about 40,000 years ago, a period that unfortunately lies near the limit of radiocarbon dating. This paper shows that as many as 70 per cent of the oldest radiocarbon dates in the literature may be too young, due to contamination by modern carbon.
  • ^ a b Pinhasi, R.; Higham, T. F. G.; Golovanova, L. V.; Doronichev, V. B. (2011). "Revised age of late Neanderthal occupation and the end of the Middle Palaeolithic in the northern Caucasus". Proceedings of the National Academy of Sciences. 108 (21): 8611–8616. Bibcode:2011PNAS..108.8611P. doi:10.1073/pnas.1018938108. PMC 3102382. PMID 21555570. The direct date of the fossil (39,700 ± 1,100 14C BP) is in good agreement with the probability distribution function, indicating at a high level of probability that Neanderthals did not survive at Mezmaiskaya Cave after 39 kya cal BP. [...] This challenges previous claims for late Neanderthal survival in the northern Caucasus. [...] Our results confirm the lack of reliably dated Neanderthal fossils younger than ≈40 kya cal BP in any other region of Western Eurasia, including the Caucasus.
  • ^ a b c Galván, B.; Hernández, C. M.; Mallol, C.; Mercier, N.; Sistiaga, A.; Soler, V. (2014). "New evidence of early Neanderthal disappearance in the Iberian Peninsula". Journal of Human Evolution. 75: 16–27. doi:10.1016/j.jhevol.2014.06.002. PMID 25016565.
  • ^ a b c Banks, W. E.; d'Errico, F.; Peterson, A. T.; Kageyama, M.; Sima, A.; Sánchez-Goñi, M. (2008). "Neanderthal extinction by competitive exclusion". PLOS ONE. 3 (12): e3972. Bibcode:2008PLoSO...3.3972B. doi:10.1371/journal.pone.0003972. PMC 2600607. PMID 19107186.
  • ^ a b c Diamond, J. (1992). The Third Chimpanzee: The Evolution and Future of the Human Animal. Harper Collins. pp. 45–52. ISBN 978-0-06-098403-8.
  • ^ a b c Finlayson, C.; Carrión, J. S. (2007). "Rapid ecological turnover and its impact on Neanderthal and other human populations". Trends in Ecology and Evolution. 22 (4): 213–222. doi:10.1016/j.tree.2007.02.001. PMID 17300854.
  • ^ a b c Bradtmöller, M.; Pastoors, A.; Weninger, B.; Weninger, G. (2012). "The repeated replacement model – Rapid climate change and population dynamics in Late Pleistocene Europe". Quaternary International. 247: 38–49. Bibcode:2012QuInt.247...38B. doi:10.1016/j.quaint.2010.10.015.
  • ^ a b c Wolf, D.; Kolb, T.; Alcaraz-Castaño, M.; Heinrich, S. (2018). "Climate deteriorations and Neanderthal demise in interior Iberia". Scientific Reports. 8 (1): 7048. Bibcode:2018NatSR...8.7048W. doi:10.1038/s41598-018-25343-6. PMC 5935692. PMID 29728579.
  • ^ a b c d Black, B. A.; Neely, R. R.; Manga, M. (2015). "Campanian Ignimbrite volcanism, climate, and the final decline of the Neanderthals" (PDF). Geology. 43 (5): 411–414. Bibcode:2015Geo....43..411B. doi:10.1130/G36514.1.
  • ^ a b c Underdown, S. (2008). "A potential role for transmissible spongiform encephalopathies in Neanderthal extinction". Medical Hypotheses. 71 (1): 4–7. doi:10.1016/j.mehy.2007.12.014. PMID 18280671.
  • ^ a b c Sullivan, A. P.; de Manuel, M.; Marques-Bonet, T.; Perry, G. H. (2017). "An evolutionary medicine perspective on Neandertal extinction" (PDF). Journal of Human Evolution. 108: 62–71. doi:10.1016/j.jhevol.2017.03.004. PMID 28622932.
  • ^ a robust and stockier builds than modern humans,[69] wider and barrel-shaped rib cages; wider pelvises;[169][25] and proportionally shorter forearms and forelegs.[170][65]

    Based on 45 Neanderthal long bones from 14 men and 7 women, the average height was 164 to 168 cm (5 ft 5 in) for males and 152 to 156 cm (5 ft) for females.[69] For comparison, the average height of 28 males and 10 females Upper Palaeolithic humans is respectively 176 cm (5 ft 9 in) and 163 cm (5 ft 4 in), though this decreases by 10 cm (4 in) nearer the end of the period based on 21 males and 15 females;[171] and the average in the year 1900 was 163 cm (5 ft 4 in) and 152.7 cm (5 ft), respectively.[172] The fossil record shows adult Neanderthals varied from about 147.5 to 177 cm (4 ft 10 in to 5 ft 10 in) in height, though it is possible that some grew much taller.[173] For Neanderthal weight, samples of 26 specimens found an average of 77.6 kg (171 lb) for males and 66.4 kg (146 lb) for females.[174] Using 76 kg (168 lb), the body mass index for Neanderthal males was calculated to be 26.9–28.2, which in modern humans correlates to being overweight. This indicates a very robust build.[69] The Neanderthal LEPR gene concerned with storing fat and body heat production is similar to that of the woolly mammoth, and so was likely an adaptation for cold climate.[66]

    The neck vertebrae of Neanderthals are longer and thicker than those of modern humans, lending to stability, possibly due to different head shape and size.[175] Though the Neanderthal thorax (where the ribcage is) was similar in size to modern humans, the longer and straighter ribs would have equated to a widened mid-lower thorax and stronger breathing in the lower thorax, which are indicative of a larger diaphragm and possibly greater Based on 45 Neanderthal long bones from 14 men and 7 women, the average height was 164 to 168 cm (5 ft 5 in) for males and 152 to 156 cm (5 ft) for females.[69] For comparison, the average height of 28 males and 10 females Upper Palaeolithic humans is respectively 176 cm (5 ft 9 in) and 163 cm (5 ft 4 in), though this decreases by 10 cm (4 in) nearer the end of the period based on 21 males and 15 females;[171] and the average in the year 1900 was 163 cm (5 ft 4 in) and 152.7 cm (5 ft), respectively.[172] The fossil record shows adult Neanderthals varied from about 147.5 to 177 cm (4 ft 10 in to 5 ft 10 in) in height, though it is possible that some grew much taller.[173] For Neanderthal weight, samples of 26 specimens found an average of 77.6 kg (171 lb) for males and 66.4 kg (146 lb) for females.[174] Using 76 kg (168 lb), the body mass index for Neanderthal males was calculated to be 26.9–28.2, which in modern humans correlates to being overweight. This indicates a very robust build.[69] The Neanderthal LEPR gene concerned with storing fat and body heat production is similar to that of the woolly mammoth, and so was likely an adaptation for cold climate.[66]

    The neck vertebrae of Neanderthals are longer and thicker than those of modern humans, lending to stability, possibly due to different head shape and size.[175] Though the Neanderthal thorax (where the ribcage is) was similar in size to modern humans, the longer and straighter ribs would have equated to a widened mid-lower thorax and stronger breathing in the lower thorax, which are indicative of a larger diaphragm and possibly greater lung capacity.[169][176][177] The lung capacity of Kebara 2 was estimated to have been 9.04 L (2.39 US gal). The Neanderthal chest was also more pronounced (expanded front-to-back, or antero-posteriorly). The sacrum (where the pelvis connects to the spine) was more vertically inclined, and was placed lower in relation to the pelvis, causing the spine to be less curved (exhibit less lordosis) and to fold in on itself somewhat (to be invaginated). Such modifications to the spine would have enhanced side-to-side (mediolateral) flexion, better supporting the wider lower thorax. This condition may be normal for Homo, with the condition of a narrower thorax in modern humans being a unique characteristic.[169]

    Body proportions are usually cited as being "hyperarctic" as adaptations to the cold, because they are similar to those of human populations which developed in cold climates[178]—the Neanderthal build is most similar to that of Inuit and Siberian Yupiks among modern humans[179]—and shorter limbs equates to higher retention of body heat.[170][178][180] Nonetheless, Neanderthals from more temperate climates—such as Iberia—still retain the "hyperarctic" physique.[181] In 2019, English anthropologist John Stewart and colleagues suggested Neanderthals instead were adapted for sprinting because of evidence of Neanderthals preferring more warmer wooded areas over the colder mammoth steppe, and DNA analysis indicating a higher proportion of fast-twitch muscle fibres in Neanderthals than modern humans. He explained their body proportions and greater muscle mass as adaptations to sprinting as opposed to the endurance-oriented modern human physique,[65] as persistence hunting may only be effective in hot climates where the hunter can run prey to the point of heat exhaustion (hyperthermia). They had longer heel bones,[182] reducing their ability for endurance running, and their shorter limbs would have reduced moment arm at the limbs, allowing for greater rotational force at the wrists and ankles without extra exertion of the rotating muscles at the elbows and knees by increasing the speed at which the muscles contracted, causing faster acceleration.[65] In 1981, American palaeoanthropologist Erik Trinkaus made note of this alternate explanation, but considered it less likely.[170][183]

    Neanderthals had a reduced chin, sloping forehead, and large nose, which also started somewhat higher on the face than in modern humans. The Neanderthal skull is typically more elongated and less globular than that of modern humans, and features an occipital bun,[185] or "chignon", a protrusion on the back of the skull, though it is within the range of variation for humans who have it. It is caused by the cranial base and temporal bones being placed higher and more towards the front of the skull, and a flatter skullcap.[186] They also had larger eyes likely to adapt to the low-light environment.[187]

    The large Neanderthal nose and paranasal sinuses have generally been explained as having warmed air as it entered the lungs and retained moisture ("nasal radiator" hypothesis);[188] but sinuses are generally reduced in cold-adapted creatures, and it may have been that the large nose was caused instead by genetic drift. Also, the sinuses are not grossly large, and are comparable in size to those of modern humans.[68][188] However, sinus size is not an important factor for breathing cold air, and their actual function is unclear, so they may not be a good indicator of evolutionary pressures to evolve such a nose.[189] Further, a computer reconstruction of the Neanderthal nose and predicted soft tissue patterns shows some similarities to those of modern Arctic peoples, potentially meaning the noses of both populations convergently evolved for breathing cold, dry air.paranasal sinuses have generally been explained as having warmed air as it entered the lungs and retained moisture ("nasal radiator" hypothesis);[188] but sinuses are generally reduced in cold-adapted creatures, and it may have been that the large nose was caused instead by genetic drift. Also, the sinuses are not grossly large, and are comparable in size to those of modern humans.[68][188] However, sinus size is not an important factor for breathing cold air, and their actual function is unclear, so they may not be a good indicator of evolutionary pressures to evolve such a nose.[189] Further, a computer reconstruction of the Neanderthal nose and predicted soft tissue patterns shows some similarities to those of modern Arctic peoples, potentially meaning the noses of both populations convergently evolved for breathing cold, dry air.[67]

    Neanderthals featured a protrusion of the jaw (prognathism), which was once cited as a response to a large bite force evidenced by heavy wearing of Neanderthal front teeth (the "anterior dental loading" hypothesis), but similar wearing trends are seen in contemporary humans. It could also have evolved to fit larger teeth in the jaw, which would better resist wear and abrasion,[190][188] and the increased wear on the front teeth compared to the back teeth probably stems from repetitive use. Neanderthal dental wear patterns are most similar to those of modern Inuit.[188] The incisors are large and shovel-shaped, and, compared to modern humans, there was an unusually high frequency of taurodontism, a condition where the molars are bulkier due to an enlarged pulp (tooth core). Taurodontism was once thought to have been a distinguishing characteristic of Neanderthals which lent some mechanical advantage or stemmed from repetitive use, but was more likely simply a product of genetic drift.[191] The bite force of Neanderthals and modern humans is now thought to be about the same,[188] about 285 N (64 lbf) and 255 N (57 lbf) in modern human males and females, respectively.[192]

    The Neanderthal braincase averages 1,600 cm3 (98 in3) for males and 1,300 cm3 (79 in3) for females,[70][71][72] within the possible range of modern humans,[193] which is, on average, 1,270 cm3 (78 in3) for males and 1,130 cm3 (69 in3) for females in present-day.[194] For 28 modern human specimens from 190–25 thousand years ago, the average was about 1,478 cc (90.2 cu in) disregarding sex, and modern human brain size is suggested to have decreased since the Upper Palaeolithic.[195] The largest Neanderthal brain, Amud 1, was calculated to be 1,736 cm3 (105.9 in3), one of the largest ever recorded in hominids.[196] Both Neanderthal and human infants measure about 400 cm3 (24 in3).[197]

    In Neanderthals, the occipital lobe—operating vision—was much larger than in modern humans, and, similarly, they had larger eyes, probably as an adaptation to lower light conditions in Europe. More brain tissue was devoted to bodily maintenance and control, and, consequently, the cognitive areas of the brain were proportionally smaller than in modern humans,[187] including the cerebellum (operating muscle memory, and possibly language, attention, working memory, social abilities, and thought), the parietal lobes (visuospatial function and episodic memory), the temporal lobes (language comprehension and associations with emotio

    In Neanderthals, the occipital lobe—operating vision—was much larger than in modern humans, and, similarly, they had larger eyes, probably as an adaptation to lower light conditions in Europe. More brain tissue was devoted to bodily maintenance and control, and, consequently, the cognitive areas of the brain were proportionally smaller than in modern humans,[187] including the cerebellum (operating muscle memory, and possibly language, attention, working memory, social abilities, and thought), the parietal lobes (visuospatial function and episodic memory), the temporal lobes (language comprehension and associations with emotions), the orbitofrontal cortex (decision making), and the olfactory bulb (sense of smell).[198]

    The lack of sunlight most likely led to the proliferation of lighter skin in Neanderthals,[199] though light skin in modern Europeans was not particularly prolific until perhaps the Bronze Age.[200] Genetically, BNC2 was present in Neanderthals, which is associated with light skin colour; however, a second variation of BNC2 was also present, which is associated with darker skin colour in the UK Biobank.[199] It is likely Neanderthal skin colour varied from region to region. The DNA of three Croatian Neanderthals shows they had darker hair, skin, and eye colour than modern Europeans.[201]

    In modern humans, skin and hair colour is regulated by the melanocyte-stimulating hormone—which increases the proportion of eumelanin (black pigment) to melanocyte-stimulating hormone—which increases the proportion of eumelanin (black pigment) to phaeomelanin (red pigment)—which is encoded by the MC1R gene. There are 5 known variants in modern humans of the gene which cause loss-of-function and are associated with light skin and hair colour, and another unknown variant in Neanderthals (the R307G variant) which could be associated with pale skin and red hair. The R307G variant was identified in a Neanderthal from Monti Lessini, Italy, and possibly Cueva del Sidrón, Spain.[202] However, as in modern humans, red was probably not a very common hair colour because the variant is not present in many other sequenced Neanderthals.[199]

    Maximum natural lifespan and the timing of adulthood, menopause, and gestation were most likely very similar to modern humans.[163] However, it has been hypothesised that Neanderthals matured faster than modern humans based on the growth rates of teeth and tooth enamel,[203][204] though this is not backed up by age biomarkers.[77] The main differences in maturation are the atlas bone in the neck as well as the middle thoracic vertebrae fused about 2 years later in Neanderthals than in modern humans, but this was more likely caused by a difference in anatomy rather than growth rate.[205][206]

    Generally, models on Neanderthal caloric requirements report significantly higher intakes than those of modern humans because they typically assume Neanderthals had higher basal metabolic rates (BMRs) due to higher muscle mass, faster growth rate, and greater body heat production against the cold;[207][208][209] and higher daily physical activity levels (PALs) due to greater daily travelling distances while foraging and no sexual division of labour.[208][209] However, using a high BMR and PAL, American archaeologist Bryan Hockett estimated that a pregnant Neandertha

    Generally, models on Neanderthal caloric requirements report significantly higher intakes than those of modern humans because they typically assume Neanderthals had higher basal metabolic rates (BMRs) due to higher muscle mass, faster growth rate, and greater body heat production against the cold;[207][208][209] and higher daily physical activity levels (PALs) due to greater daily travelling distances while foraging and no sexual division of labour.[208][209] However, using a high BMR and PAL, American archaeologist Bryan Hockett estimated that a pregnant Neanderthal would have consumed 5,500 calories per day, which would have necessitated a heavy reliance on big game meat; such a diet would have caused numerous deficiencies or nutrient poisonings, so he concluded that these are unfair assumptions to make.[209]

    Neanderthals may have been more active during dimmer light conditions rather than broad daylight because they lived in regions with reduced daytime hours, hunted large game (such predators typically hunt at night to enhance ambush tactics), and had large eyes and visual processing neural centres. Genetically, colour blindness (which may enhance mesopic vision) is typically correlated with northern-latitude populations, and the Neanderthals from Vindija Cave, Croatia, had some substitutions in the Opsin genes which could have influenced colour vision. However, the functional implications of these substitutions are inconclusive.[210] Neanderthal-derived alleles near ASB1 and EXOC6 are associated with being an evening person, narcolepsy, and day-time napping.[199]

    Neanderthals suffered a high rate of traumatic injury, with an estimated 79–94% of specimens showing evidence of healed major trauma, of which 37–52% were severely injured, and 13–19% injured before reaching adulthood.[211] One extreme example is Shanidar 1, who shows signs of an amputation of the right arm likely due to a nonunion after breaking a bone in adolescence, osteomyelitis (a bone infection) on the left clavicle, an abnormal gait, vision problems in the left eye, and possible hearing loss[212] (perhaps swimmer's ear).[213] In 1995, Trinkaus estimated that about 80% succumbed to their injuries and died before reaching 40, and thus theorised that Neanderthals employed a risky hunting strategy ("rodeo rider" hypothesis).[77] However, rates of cranial trauma are not significantly different between Neanderthals and Middle Palaeolithic modern humans (though Neanderthals seem to have had a higher mortality risk),[214] there are few specimens of both Upper Palaeolithic modern humans and Neanderthals who died after the age of 40,[167] and there are overall similar injury patterns between them. In 2012, Trinkaus concluded that Neanderthals instead injured themselves in the same way as contemporary humans, such as by interpersonal violence.[215] A 2016 study looking at 124 Neanderthal specimens argued that high trauma rates were instead caused by animal attacks, and found that about 36% of the sample were victims of bear attacks, 21% big cat attacks, and 17% wolf attacks (totalling 92 positive cases, 74%). There were no cases of hyaena attacks, though hyaenas still nonetheless probably attacked Neanderthals, at least opportunistically.[216] Such intense predation probably stemmed from common confrontations due to competition over food and cave space, and from Neanderthals hunting these carnivores.[216]

    A mostly complete skeleton laid out against a black background horizontallygenetic diversity and probably inbreeding, which reduced the population's ability to filter out harmful mutations (inbreeding depression). However, it is unknown how this affected a single Neanderthal's genetic burden and, thus, if this caused a higher rate of birth defects than in modern humans.[217] It is known, however, that the 13 inhabitants of Sidrón Cave collectively exhibited 17 different birth defects likely due to inbreeding or recessive disorders.[218] Likely due to advanced age (60s or 70s), La Chapelle-aux-Saints 1 had signs of Baastrup's disease, affecting the spine, and osteoarthritis.[219] Shanidar 1, who likely died at about 40 or 50, was diagnosed with the most ancient case of diffuse idiopathic skeletal hyperostosis (DISH), a degenerative disease which can restrict movement, which, if correct, would indicate a moderately high incident rate for older Neanderthals.[220]

    Neanderthals were likely subject to several infectious diseases and parasites. Modern humans likely transmitted diseases to them; one possible candidate is the stomach bacteria Helicobacter pylori.[221] The modern human papillomavirus variant 16A may descend from Neanderthal introgression.[222] A Neanderthal at Cueva del Sidrón, Spain, shows evidence of a gastrointestinal Enterocytozoon bieneusi infection.[40] The leg bones of the French La Ferrassie 1 feature lesions that are consistent with Neanderthals were likely subject to several infectious diseases and parasites. Modern humans likely transmitted diseases to them; one possible candidate is the stomach bacteria Helicobacter pylori.[221] The modern human papillomavirus variant 16A may descend from Neanderthal introgression.[222] A Neanderthal at Cueva del Sidrón, Spain, shows evidence of a gastrointestinal Enterocytozoon bieneusi infection.[40] The leg bones of the French La Ferrassie 1 feature lesions that are consistent with periostitis—inflammation of the tissue enveloping the bone—likely a result of hypertrophic osteoarthropathy, which is primarily caused by a chest infection or lung cancer.[223] Neanderthals had a lower cavity rate than modern humans, despite some populations consuming typically cavity-causing foods in great quantity, which could indicate a lack of cavity-causing oral bacteria, namely Streptococcus mutans.[224]

    Two 250,000 year old Neanderthal children from Payré, France, present the earliest known cases of lead exposure of any hominin. They were exposed on two distinct occasions either by eating or drinking contaminated food or water, or inhaling lead-laced smoke from a fire. There are two lead mines within 25 km (16 mi) of the site.[225]

    Neanderthals likely lived in more sparsely distributed groups than contemporary modern humans,[163] but group size is thought to have averaged 10 to 30 individuals, similar to modern hunter-gatherers.[31] Reliable evidence of Neanderthal group composition comes from Cueva del Sidrón, Spain, and the footprints at Le Rozel, France:[173] the former shows 7 adults, 3 adolescents, 2 juveniles, and an infant;[226] whereas the latter, based on footprint size, shows a group of 10 to 13 members where juveniles and adolescents made up 90%.[173]

    A Neanderthal child's teeth analysed in 2018 showed it was weaned after 2.5 years, similar to modern hunter gatherers, and was born in the spring, which is consistent with modern humans and other mammals whose birth cycles coincide with environmental cycles.[225] Indicated from various ailments resulting from high stress at a low age, such as stunted growth, British archaeologist Paul Pettitt hypothesised that children of both sexes were put to work directly after weaning;[168] and Trinkaus said that, upon reaching adolescence, an individual may have been expected to join in hunting large and dangerous game.[77] However, the bone trauma is comparable to modern Inuit, which could suggest a similar childhood between Neanderthals and contemporary modern humans.[227] Further, such stunting may have also resulted from harsh winters and bouts of low food resources.[225]

    Sites showing evidence of no more than three individuals may have represented nuclear families or temporary camping sites for special task groups (such as a hunting party).[31] Bands likely moved between certain caves depending on the season, indicated by remains of seasonal materials such as certain foods, and returned to the same locations generation after generation. Some sites may have been used for over 100 years.[228] Cave bears m

    A Neanderthal child's teeth analysed in 2018 showed it was weaned after 2.5 years, similar to modern hunter gatherers, and was born in the spring, which is consistent with modern humans and other mammals whose birth cycles coincide with environmental cycles.[225] Indicated from various ailments resulting from high stress at a low age, such as stunted growth, British archaeologist Paul Pettitt hypothesised that children of both sexes were put to work directly after weaning;[168] and Trinkaus said that, upon reaching adolescence, an individual may have been expected to join in hunting large and dangerous game.[77] However, the bone trauma is comparable to modern Inuit, which could suggest a similar childhood between Neanderthals and contemporary modern humans.[227] Further, such stunting may have also resulted from harsh winters and bouts of low food resources.[225]

    Sites showing evidence of no more than three individuals may have represented nuclear families or temporary camping sites for special task groups (such as a hunting party).[31] Bands likely moved between certain caves depending on the season, indicated by remains of seasonal materials such as certain foods, and returned to the same locations generation after generation. Some sites may have been used for over 100 years.[228] Cave bears may have greatly competed with Neanderthals for cave space, and there is a decline in cave bear populations starting 50,000 years ago onwards (though their extinction occurred well after Neanderthals had died out).[229][230] Though Neanderthals are generally considered to have been cave dwellers, with 'home base' being a cave, open-air settlements near contemporaneously inhabited cave systems in the Levant could indicate mobility between cave and open-air bases in this area. Evidence for long-term open-air settlements is known from the 'Ein Qashish site in Israel,[231][232] and Moldova I in Ukraine. Though Neanderthals appear to have had the ability to inhabit a range of environments—including plains and plateaux—open-air Neanderthals sites are generally interpreted as having been used as slaughtering and butchering grounds rather than living spaces.[76]

    Canadian ethnoarchaeologist Brian Hayden calculated a self-sustaining population which avoids inbreeding to consist of about 450–500 individuals, which would necessitate these bands to interact with 8–53 other bands, but more likely the more conservative estimate given low population density.[31] Analysis of the mtDNA of the Neanderthals of Cueva del Sidrón, Spain, showed that the three adult men belonged to the same maternal lineage, while the three adult women belonged to different ones. This suggests a patrilocal residence (that a woman moved out of her group to live with her husband).[233] However, the DNA of a Neanderthal from Denisova Cave, Russia, shows that she had an inbreeding coefficient of ​18 (her parents were either half-siblings with a common mother, double first cousins, an uncle and niece or aunt and nephew, or a grandfather and granddaughter or grandmother and grandson)[83] and the inhabitants of Cueva del Sidrón show several defects, which may have been caused by inbreeding or recessive disorders.[218]

    Considering most Neanderthal artefacts were sourced no more than 5 km (3.1 mi) from the main settlement, Hayden considered it unlikely these bands interacted very often,[31] and mapping of the Neanderthal brain and their sm

    Considering most Neanderthal artefacts were sourced no more than 5 km (3.1 mi) from the main settlement, Hayden considered it unlikely these bands interacted very often,[31] and mapping of the Neanderthal brain and their small group size and population density could indicate that they had a reduced ability for inter-group interaction and trade.[187] However, a few Neanderthal artefacts in a settlement could have originated 20, 30, 100, and 300 km (12.5, 18.5, 60, and 185 mi) away. Based on this, Hayden also speculated that macro-bands formed which functioned much like those of the low-density hunter gatherer societies of the Western Desert of Australia. Macro-bands collectively encompass 13,000 km2 (5,000 sq mi), with each band claiming 1,200–2,800 km2 (460–1,080 sq mi), maintaining strong alliances for mating networks or to cope with leaner times and enemies.[31] Similarly, British anthropologist Eiluned Pearce and Cypriot archaeologist Theodora Moutsiou speculated that Neanderthals were possibly capable of forming geographically expansive ethnolinguistic tribes encompassing upwards of 800 people, based on the transport of obsidian up to 300 km (190 mi) from the source compared to trends seen in obsidian transfer distance and tribe size in modern hunter gatherers. However, likely due to a significantly lower population, their model also reported that Neanderthals would not have been as efficient at maintaining long-distance networks as contemporary humans.[234] Hayden noted an apparent cemetery of six or seven individuals at La Ferrassie, France, which, in modern humans, is typically used as evidence of a corporate group which maintained a distinct social identity and controlled some resource, trading, manufacturing, and so on. La Ferrassie is also located in one of the richest animal-migration routes of Pleistocene Europe.[31]

    Genetic analysis indicates there were at least 3 distinct geographical groups—Western Europe, the Mediterranean coast, and east of the Caucasus—with some migration between these regions.[75] Post-Eemian Western European Mousterian lithics can also be broadly grouped into 3 distinct macro-regions: Acheulean-tradition Mousterian in southwest, Micoquien in the northeast, and Mousterian with bifacial tools (MBT) in between the former two. MBT may actually represent the interactions and fusion of the two different cultures.[74] Southern Neanderthals exhibit regional anatomical differences from northern counterparts: a less protrusive jaw, a shorter gap behind the molars, and a vertically higher jawbone.[235] These all instead suggest Neanderthal communities regularly interacted with neighbouring communities within a region, but not as often beyond.[74]

    Nonetheless, over long periods of time, there is evidence of large-scale cross-continental migration. Early specimens from Mezmaiskaya Cave in the Caucasus[128] and Denisova Cave in the Siberian Altai Mountains[81] differ genetically from those found in Western Europe, whereas later specimens from these caves both have genetic profiles more similar to Western European Neanderthal specimens than to the earlier specimens from the same locations, suggesting long-range migration and population replacement over time.[128]Nonetheless, over long periods of time, there is evidence of large-scale cross-continental migration. Early specimens from Mezmaiskaya Cave in the Caucasus[128] and Denisova Cave in the Siberian Altai Mountains[81] differ genetically from those found in Western Europe, whereas later specimens from these caves both have genetic profiles more similar to Western European Neanderthal specimens than to the earlier specimens from the same locations, suggesting long-range migration and population replacement over time.[128][81] Similarly, artefacts and DNA from Chagyrskaya and Okladnikov Caves, also in the Altai Mountains, resemble those of eastern European Neanderthal sites about 3,000–4,000 km (1,900–2,500 mi) away more than they do artefacts and DNA of the older Neanderthals from Denisova Cave, suggesting two distinct migration events into Siberia.[236] Neanderthals seem to have suffered a major population decline during MIS 4 (71–57 thousand years ago), and the distribution of the Micoquian tradition could indicate that Central Europe and the Caucasus were repopulated by communities from a refuge zone either in eastern France or Hungary (the fringes of the Micoquian tradition) who dispersed along the rivers Prut and Dniester.[237]

    There is also evidence of inter-group conflict: a skeleton from La Roche à Pierrot, France, showing a healed fracture on top of the skull apparently caused by a deep blade wound,[238] and another from Shanadir Cave, Iraq, found to have a rib lesion characteristic of projectile weapon injuries.[239]

    It is sometimes suggested, since they were hunters of challenging big game and lived in small groups, there was no sexual division of labour as seen in modern hunter gatherer societies. That is, men, women, and children all had to be involved in hunting, instead of men hunting with women and children foraging. However, with modern hunter gatherers, the higher the meat dependency, the higher the division of labour.[31] Further, tooth-wearing patterns in Neanderthal men and women suggest they commonly used their teeth for carrying items, but men exhibit more wearing on the upper teeth, and women the lower, suggesting some cultural differences in tasks.[240]

    It is controversially proposed that some Neanderthals wore decorative clothing or jewellery—such as a leopard skin or raptor feathers—to display elevated status in the group. Hayden postulated that the small number of Neanderthal graves found w

    It is controversially proposed that some Neanderthals wore decorative clothing or jewellery—such as a leopard skin or raptor feathers—to display elevated status in the group. Hayden postulated that the small number of Neanderthal graves found was because only high-ranking members would receive an elaborate burial, as is the case for some modern hunter gatherers.[31] Trinkaus suggested that elderly Neanderthals were given special burial rites for lasting so long given the high mortality rates.[77] Alternatively, many more Neanderthals may have received burials, but the graves were infiltrated and destroyed by bears.[241] Given that 20 graves of Neanderthals aged under 4 have been found—over a third of all known graves—deceased children may have received greater care during burial than other age demographics.[227]

    Looking at Neanderthal skeletons recovered from several natural rock shelters, Trinkaus said that, although Neanderthals were recorded as bearing several trauma-related injuries, none of them had significant trauma to the legs that would debilitate movement. He suggested that self worth in Neanderthal culture derived from contributing food to the group; a debilitating injury would remove this self-worth and result in near-immediate death, and individuals who could not keep up with the group while moving from cave to cave were left behind.[77] However, there are examples of individuals with highly debilitating injuries being nursed for several years, and caring for the most vulnerable within the community dates even further back to H. heidelbergensis.[227][41] Especially given the high trauma rates, it is possible that such an altruistic strategy ensured their survival as a species for so long.[41]

    Neanderthals were once thought of as scavengers, but are now considered to have been apex predators.[242][243] In 1980, it was hypothesised that two piles of mammoth skulls at La Cotte de St Brelade, Channel Islands, at the base of a gulley were evidence of mammoth drive hunting (causing them to stampede off a ledge),[244] but this is contested.[245] Living in a forested environment, Neanderthals were likely ambush hunters, getting close to and attacking their target—a prime adult—in a short burst of speed, thrusting in a spear at close quarters.[246][65] Younger or wounded animals may have been hunted using traps, projectiles, or pursuit.[246] Nonetheless, they were able to adapt to a variety of habitats.[50][245] They appear to have eaten predominantly what was abundant within their immediate surroundings,[52] with steppe-dwelling communities (generally outside of the Mediterranean) subsisting almost entirely on meat from large game, forest-dwelling communities consuming a wide array of plants and smaller animals, and waterside communities gathering aquatic resources. Contemporary humans, in contrast, seem to have used more complex food extraction strategies and generally had a more diverse diet.[247] Nonetheless, Neanderthals still would have had to have eaten a varied enough diet to prevent nutrient deficiencies and protein poisoning, especially in the winter when they presumably ate mostly lean meat. Any food with high contents of other essential nutrients not provided by lean meat would have been vital components of their diet, such as fat-rich brains,[41] carbohydrate-rich and abundant underground storage organs (including roots and tubers),[248] or, like modern Inuit, the stomach contents of herbivorous prey items.[249]

    For meat, they appear to have fed predominantly on hoofed mammals, namely red deer and reindeer as these two were the most abundant game,[45] but also on other Pleistocene megafauna such as ibex, wild boar, aurochs, mammoth, straight-tusked elephant, woolly rhinoceros, and so on.[25][46][250] There is evidence of directed cave and brown bear hunting both in and out of hibernation, as well as butchering.[251] Analysis of Neanderthal bone collagen from Vindija Cave, Croatia, shows nearly all of their protein needs derived from animal meat.[46] Some caves show evidence of regular rabbit and tortoise consumption. At Gibraltar sites, there are remains of 143 different bird species, many ground-dwelling

    For meat, they appear to have fed predominantly on hoofed mammals, namely red deer and reindeer as these two were the most abundant game,[45] but also on other Pleistocene megafauna such as ibex, wild boar, aurochs, mammoth, straight-tusked elephant, woolly rhinoceros, and so on.[25][46][250] There is evidence of directed cave and brown bear hunting both in and out of hibernation, as well as butchering.[251] Analysis of Neanderthal bone collagen from Vindija Cave, Croatia, shows nearly all of their protein needs derived from animal meat.[46] Some caves show evidence of regular rabbit and tortoise consumption. At Gibraltar sites, there are remains of 143 different bird species, many ground-dwelling such as the common quail, corn crake, woodlark, and crested lark.[50] Neanderthals also exploited marine resources on the Iberian, Italian, and Peloponnesian Peninsulas, where they waded or dived for shellfish,[50][252][253] as early as 150,000 years ago at Cueva Bajondillo, Spain, similar to the fishing record of modern humans.[254] At Vanguard Cave, Gibraltar, the inhabitants consumed Mediterranean monk seal, short-beaked common dolphin, common bottlenose dolphin, Atlantic bluefin tuna, sea bream, and purple sea urchin;[50][255] and at Gruta da Figueira Brava, Portugal, there is evidence of large-scale harvest of shellfish, crabs, and fish.[256] Evidence of freshwater fishing was found in Grotte di Castelcivita, Italy, for trout, chub, and eel;[253] Abri du Maras, France, for chub and European perch; Payré, France;[257] and Kudaro Cave, Russia, for Black Sea salmon.[258]

    Neanderthal communities also included a wide array of plants in their diets.[47] Edible plant and mushroom remains are recorded from several caves.[48] Neanderthals from Cueva del Sidrón, Spain, based on dental tartar, likely had a meatless diet of mushrooms, pine nuts, and moss, indicating they were forest foragers.[40] Remnants from Amud Cave, Israel, indicates a diet of figs, palm tree fruits, and various cereals and edible grasses.[49] Several bone traumas in the leg joints could possibly suggest habitual squatting, which, if the case, was likely done while gathering food.[259] Dental tartar from Grotte de Spy, Belgium, indicates the inhabitants had a meat-heavy diet including woolly rhinoceros and mouflon sheep, while also regularly consuming mushrooms.[40] Neanderthal faecal matter from El Salt, Spain, dated to 50,000 years ago—the oldest human faecal matter remains recorded—show elevated coprostanol levels (digested cholesterol indicating a meat-heavy diet) and elevated stigmastanol (deriving from plant matter).[260] Evidence of cooked plant foods—mainly legumes and, to a far lesser extent, acorns—was discovered in Kebara Cave, Israel, with its inhabitants possibly gathering plants in spring and fall and hunting in all seasons except fall, though the cave was probably abandoned in late summer to early fall.[39] At Shanidar Cave, Iraq, Neanderthals collected plants with various harvest seasons, indicating they scheduled returns to the area to harvest certain plants, and that they had complex food-gathering behaviours for both meat and plants.[47]

    Neanderthals probably could employ a wide range of cooking techniques, such as roasting, and they may have been able to heat up or boil soup, stew, or animal stock.[43] The abundance of animal bone fragments at settlements may indicate the making of fat stocks from boiling bone marrow, possibly taken from animals that had already died of starvation. These methods would have substantially increased fat consumption, which was a major nutritional requirement of communities with low carbohydrate and high protein intake.[43][261] Neanderthal tooth size had a decreasing trend after 100,000 years ago, which could indicate an increased dependence on cooking or the advent of boiling, a technique that would have softened food.[262]

    Small white flowers with a red-striped black bug sitting ontopsmoked food,[44] as well as used certain plants—such as yarrow and camomile—as flavouring,[43] though these plants may have instead been used for their medicinal properties.[38] At Gorham's Cave, Gibraltar, Neanderthals may have been roasting pinecones to access pine nuts.[50]

    At Grotte du Lazaret, France, a total of 23 red deer, 6 ibexes, 3 aurochs, and 1 roe deer appear to have been hunted in a single autumn hunting season, when strong male and female deer herds would group together for rut. The entire carcasses seem to have been transported to the cave and then butchered. Because this is such a large amount of food to consume before spoilage, it is possible these Neanderthals were curing and preserving it before winter set in. At 160,000 years old, it is the oldest potential evidence of food storage.[42] The great quantities of meat and fat which could have been gathered in general from typical prey items (namely mammoths) could also indicate food storage capability.[263] With shellfish, Neanderthals

    At Grotte du Lazaret, France, a total of 23 red deer, 6 ibexes, 3 aurochs, and 1 roe deer appear to have been hunted in a single autumn hunting season, when strong male and female deer herds would group together for rut. The entire carcasses seem to have been transported to the cave and then butchered. Because this is such a large amount of food to consume before spoilage, it is possible these Neanderthals were curing and preserving it before winter set in. At 160,000 years old, it is the oldest potential evidence of food storage.[42] The great quantities of meat and fat which could have been gathered in general from typical prey items (namely mammoths) could also indicate food storage capability.[263] With shellfish, Neanderthals needed to eat, cook, or in some manner preserve them soon after collection, as shellfish spoils very quickly. At Cueva de los Aviones, Spain, the remains of edible, algae eating shellfish associated with the alga Jania rubens could indicate that, like some modern hunter gatherer societies, harvested shellfish were held in water-soaked algae to keep them alive and fresh until consumption.[264]

    Competition from large Ice Age predators was rather high. Cave lions likely targeted horses, large deer and wild cattle; and leopards primarily reindeer and roe deer; which heavily overlapped with Neanderthal diet. To defend a kill against such ferocious predators, Neanderthals may have engaged in a group display of yelling, arm waving, or stone throwing; or quickly gathered meat and abandoned the kill. However, at Grotte de Spy, Belgium, the remains of wolves, cave lions, and cave bears—which were all major predators of the time—indicate Neanderthals hunted their competitors to some extent.[51]

    Neanderthals and cave hyaenas may have exemplified niche differentiation, and actively avoided competing with each other. Though they both mainly targeted the same groups of creatures—deer, horses, and cattle—Neanderthals mainly hunted the former and cave hyaenas the latter two. Further, animal remains from Neanderthal caves indicate they preferred to hunt prime individuals, whereas cave hyaenas hunted weaker or younger prey, and cave hyaena caves have a higher abundance of carnivore remains.[45] Nonetheless, there is evidence that cave hyaenas stole food and leftovers from Neanderthal campsites and scavenged on dead Neanderthal bodies.[265]

    Cannibalism

    Despite the apparent 150 thousand year stagnation in Neanderthal lithic innovation,[163] there is evidence that Neanderthal technology was more sophisticated than was previously thought.[63] However, the high frequency of potentially debilitating injuries could have prevented very complex technologies from emerging, as a major injury would have impeded an expert's ability to effectively teach a novice.[211]

    Tool manufacturing

    [163] there is evidence that Neanderthal technology was more sophisticated than was previously thought.[63] However, the high frequency of potentially debilitating injuries could have prevented very complex technologies from emerging, as a major injury would have impeded an expert's ability to effectively teach a novice.[211]

    Tool manufacturing

    Neanderthal produced the adhesive [76]

    Neanderthal produced the adhesive birch bark tar, perhaps using plant-based resins for hafting.[319] It was long believed that birch bark tar required a complex recipe to be followed, and that it thus showed complex cognitive skills and cultural transmission. However, a 2019 study showed it can be made simply by burning birch bark on smooth vertical surfaces, such as a flat, inclined rock.[33]

    Clothes

    Neanderthals were likely able to survive in a similar range of temperatures as modern humans while sleeping: about 32 °C (90 °F) while naked in the open and windspeed 5.4 km/h (3.4 mph), or 27–28 °C (81–82 °F) while naked in an enclosed space. Since ambient temperatures were markedly lower than this—averaging during the Eemian interglacial 17.4 °C (63.3 °F) in July and 1 °C (34 °F) in January and dropping to as a low as −30 °C (−22 °F) on the coldest days—Danish physicist Bent Sørensen hypothesised that Neanderthals required tailored clothing capable of preventing airflow to the skin. Especially during extended periods of travelling (such as a hunting trip), tailored footwear completely enwrapping the feet may have been necessary.[320]

    Front and back views of two almost-triangular-shaped stones with a sharp edge running across the bottom sidestitching awls assumed to have been in use by contemporary modern humans, the only known Neanderthal tools that could have been used to fashion clothes are hide scrapers, which could have made items similar to blankets or ponchos, and there is no direct evidence they could produce fitted clothes.[34][321] Indirect evidence of tailoring by Neanderthals includes the ability to manufacture string, which could indicate weaving ability,[257] and a naturally-pointed horse metatarsal bone from Cueva de los Aviones, Spain, which was speculated to have been used as an awl, perforating dyed hides, based on the presence of orange pigments.[264] Whatever the case, Neanderthals would have needed to cover up most of their body, and contemporary humans would have covered 80–90%.[321][322]

    Since human/Neanderthal admixture is known to have occurred in the Middle East, and no modern body louse species descends from their Neanderthal counterparts (body lice only inhabit clothed individuals), it is possible Neanderthals (and/or humans) in hotter climates did not wear clothes, or Neanderthal lice were highly specialised.[322]

    Seafaring

    Remains of Middle Palaeolithic stone tools on Greek islands indicate early seafaring by Neanderthals in the Ionian Sea possibly starting as far back as 200–150 thousand years ago. The oldest stone artefacts from Crete date to 130–107 thousand years ago, Cephalonia 125 thousand years ago, and Zakynthos 110–35 thousand years ago. If correct, they likely employed simple reed boats a

    Since human/Neanderthal admixture is known to have occurred in the Middle East, and no modern body louse species descends from their Neanderthal counterparts (body lice only inhabit clothed individuals), it is possible Neanderthals (and/or humans) in hotter climates did not wear clothes, or Neanderthal lice were highly specialised.[322]

    Remains of Middle Palaeolithic stone tools on Greek islands indicate early seafaring by Neanderthals in the Ionian Sea possibly starting as far back as 200–150 thousand years ago. The oldest stone artefacts from Crete date to 130–107 thousand years ago, Cephalonia 125 thousand years ago, and Zakynthos 110–35 thousand years ago. If correct, they likely employed simple reed boats and made one-day crossings back and forth.[36] Other Mediterranean islands include Sardinia, Melos, Alonnisos,[37] and Naxos (though Naxos may have been connected to land),[323] and it is possible they crossed the Strait of Gibraltar.[37] Their ability to engineer these boats and navigate through open waters would speak to their advanced cognitive and technical skills.[37][323]

    Medicine

    Given high trauma rates and evidence of healing, Neanderthals appear to have been well-equipped at handling severe injuries. Well-healed fractures on many bones indicate the setting of splints. Individuals with severe head and rib traumas (which would have caused massive blood loss) indicate they had some manner of dressing major wounds, and bandages could have been made from animal skin. By-and-large, they appear to have avoided severe infections, indicating good long-term treatment of such wounds.[41]

    Their knowledge of medicinal plants was comparable to that of contemporary humans.[41] An individual at Cueva de

    Their knowledge of medicinal plants was comparable to that of contemporary humans.[41] An individual at Cueva del Sidrón, Spain, seems to have been medicating a dental abscess using poplar—which contains salicylic acid, the active ingredient in aspirin—and there were also traces of the antibiotic-producing Penicillium chrysogenum.[40] They may have also used yarrow and camomile, and their bitter taste—which should act as a deterrent as it could indicate poison—means it was likely a deliberate act.[38] In Kebara Cave, Israel, plant remains which have historically been used for their medicinal properties were found, including the common grape vine, the pistachios of the Persian turpentine tree, ervil seeds, and oak acorns.[39]

    In 1971, cognitive scientist Philip Lieberman reconstructed the Neanderthal vocal tract as similar to that of a newborn and incapable of producing nasal sounds, because they had a large mouth and thus lacked the necessity for a descended larynx to fit the entire tongue inside the mouth. He then concluded that they were anatomically unable to produce the sounds /a/, /i/, /u/, /ɔ/, /g/, and /k/ and thus lacked the capacity for articulate speech, albeit still capable of speech at a level higher than non-human primates.[324][325][326] However, the lack of a descended larynx does not necessarily equate to a reduced vowel capacity.[327] The 1983 discovery of a Neanderthal hyoid bone—used in speech production in humans—in Kebara 2 which is almost identical to that of humans suggests Neanderthals were capable of speech, and the ancestral Sima de los Huesos hominins had humanlike hyoid and ear bones, which could suggest the early evolution of the modern human vocal apparatus. However, the hyoid does not definitively provide insight into vocal tract anatomy.[64] Subsequent studies reconstruct the Neanderthal vocal apparatus as comparable to that of modern humans, with a similar vocal repertoire.[328] In 2015, Lieberman stated that Neanderthals were capable of syntactical language, though nonetheless incapable of mastering any human dialect.[329]

    The degree of language complexity is difficult to establish, but given that Neanderthals achieved some technical and cultural complexity, and interbred with humans, it is reasonable to assume they were at least fairly articulate, comparable to modern humans. A somewhat complex language—possibly using syntax—was likely necessary to survive in their harsh environment, with Neanderthals needing to communicate about topics such as locations, hunting and gathering, and tool-making techniques.[63][330][331] The FOXP2 gene in modern humans is associated with speech and language development. FOXP2 was present in Neanderthals,[332] but not the gene's modern human variant.[333] Neurologically, Neanderthals had an expanded Broca's area—operating the formulation of sentences, and speech compreh

    The degree of language complexity is difficult to establish, but given that Neanderthals achieved some technical and cultural complexity, and interbred with humans, it is reasonable to assume they were at least fairly articulate, comparable to modern humans. A somewhat complex language—possibly using syntax—was likely necessary to survive in their harsh environment, with Neanderthals needing to communicate about topics such as locations, hunting and gathering, and tool-making techniques.[63][330][331] The FOXP2 gene in modern humans is associated with speech and language development. FOXP2 was present in Neanderthals,[332] but not the gene's modern human variant.[333] Neurologically, Neanderthals had an expanded Broca's area—operating the formulation of sentences, and speech comprehension—but 11 out of 48 genes which encode for language brainwaves had different methylation patterns between Neanderthals and modern humans. This could indicate a stronger ability in modern humans than in Neanderthals to express language.[334]

    Neuroscientist Andrey Vyshedskiy argued that Neanderthals lacked mental synthesis, the behaviorally modern human imaginative ability to craft effectively infinite ideas using a finite amount of words. This is a hallmark of behavioural modernity, which he believed spontaneously appeared by about 70,000 years ago (the "Upper Palaeolithic Revolution").[335] However, behavioural modernity is regarded as a process initiated much earlier, potentially as early as 400,000 years ago,[336] and may have also been exhibited in Neanderthals.[337][331][54]